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Abstract A new algorithm based on evolutionary computation concepts is presented
in this paper. This algorithm is a non linear evolutive filter known as the Evolutive
Localization Filter (ELF) which is able to solve the global localization problem in
a robust and efficient way. The proposed algorithm searches stochastically along the
state space for the best robot pose estimate. The set of pose solutions (the population)
represents the most likely areas according to the perception and motion information
up to date. The population evolves by using the log-likelihood of each candidate
pose according to the observation and the motion error derived from the compari-
son between observed and predicted data obtained from the probabilistic perception
and motion model. The algorithm has been tested on a mobile robot equipped with
a laser range finder to demonstrate the effectiveness, robustness and computational
efficiency of the proposed approach.

Keywords Evolutive algorithm · Maximum a posteriory estimate · Non-linear filter ·
Global localization · Mobile robots

1 Introduction

Localization is a key component in geometrical robot navigation and required to
execute successfully a geometrical path generated by a global planner. Two differ-
ent cases can be distinguished: the re-localization case and the global localization
case. Re-localization problem tries to keep track of mobile robot pose, where the
robot knows its initial position (at least approximately) and therefore has to maintain
localized the robot along the given mission. The global localization problem does not

L. Moreno · S. Garrido (B) · D. Blanco
System Engineering and Automation, Carlos III University, calle Universidad,
30, Leganes, Madrid 28911, Spain
e-mail: sgarrido@ing.uc3m.es



382 J Glob Optim (2007) 37:381–403

assume any knowledge about the robot’s initial position and therefore has to globally
localize itself. An associated problem is the robot kidnapping problem, which tries to
determine the mobile robot pose, once the robot has been displaced from its known
position to another unknown arbitrary pose without providing any motion estimation
information to the mobile robot. In that case, the robot’s estimated position is erro-
neous and therefore has to recover from a serious pose failure to globally localize
itself.

The majority of existing algorithms address only the re-localization problem. In
this case the small incremental errors produced along the robot motion and the initial
knowledge of the robot pose makes classical approaches such as Kalman filters appli-
cable. The Kalman filter for re-localization was introduced in the eighties [4, 6, 16, 19].
If we consider the robot pose estimation as a Bayesian recursive problem, Kalman
filters estimate posterior distribution of poses conditioned on sensor data. Based on
the Gaussian noise assumption and the Gaussian-distributed initial uncertainty, this
method represents posterior distributions by Gaussians. Kalman filters constitute an
efficient solution to the re-localization problem. However, the assumptions nature of
the uncertainty representation makes Kalman filters not robust in global localization
problems.

Three families of algorithms provide a solution to the global localization problem:
multi-hypothesis Kalman filters [1, 2, 5, 16, 25], grid-based probabilistic filters [3, 9,
24] and Monte Carlo localization methods [7, 14, 23]. Those methods can be included
in a wider scope group of Bayesian estimation methods. This kind of methods are
described in detail in Sect. 2 and 3.

This article presents a localization algorithm based on a non-linear filter called
the Evolutionary Localization Filter (ELF). ELF solves the global localization robot
problem in a robust and efficient way. The algorithm can accommodate arbitrary
noise distributions and non-linear state space systems. It operates with raw sensor
data, avoiding to extract features from the sensor data. The key idea of ELF is to
represent the uncertainty about the robot pose by a set of possible pose estimates
weighted by a fitness function derived from the log-likelihood of the pose given
the previous estimate. The idea of estimating state recursively using set of solu-
tions is conceptually similar to Monte Carlo localization methods. The difference
relies on: the significance of the weight associated to each possible solution included
in the set, and in the method the set of solutions evolve in time (to integrate the
raw sensor information and the robot motion information). The adaptation engine
of the ELF method is based on genetic adaptation ideas applied to the gradient
method.

The rest of this article is organized as follows. Section 2 introduces the mathe-
matical derivation of the global localization problem as a Bayesian recursive prob-
lem. In Sect. 3, the specific formulations of different existing approaches able to
solve this problem, like multi-hypothesis Kalman filter, grid-based probabilistic fil-
ters or Monte Carlo filters are revised. Section 4 introduces the basic mechanism
of the differential evolutive filter. The fitness function is addressed, and the way
of including in this function all available error information is introduced. Posteri-
orly the ELF algorithm is explained. Section 5 shows the experimental results. This
section includes the analysis of the convergence results, the accuracy and robust-
ness, and the computational cost. Finally, a description of related work is done in
Sect. 6 and the advantages and disadvantages of the algorithm are discussed in the
last section.
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2 Bayesian formulation of localization problem

From a Bayesian point of view, the localization problem is basically a probability
density estimation problem, where the robot seeks to estimate a posterior distribu-
tion over the space of its poses conditioned on the available data. The robot’s pose
(x, y, θ)T at time t will be denoted by xt, and the data up to time t by Yt. The posterior
probability distribution according to this notation can be written as p(xt|Yt, m), where
m is the environment model which is known. To alleviate the notation, the term m
is not included in the following expressions, p(xt|Yt). Sensor data typically comes
from two different sources: motion sensors which provide data relating to change
of the situation (e.g., odometer readings) and perception sensors which provide data
relating to environment (e.g., camera images, laser range scans, ultrasound measures).
We refer the former as motions ui and the latter as observations zi. Motion u(t − 1)

refers to the robot displacement in the time interval [t − 1, t] as a consequence of the
control command given at time t − 1. We will consider that both types of data arrives
alternatively Yt = {z0, u0, . . . , zt−1, ut−1, zt}.

These sensor data can be divided in two groups of data Yt ≡ {Zt, Ut−1} where Zt =
{z0, . . . , zt} contains the perception sensor measurements and Ut−1 = {u0, . . . , ut−1}
contains the odometric information. To estimate the posterior distribution p(xt|Yt),
probabilistic approaches resort to the Markov assumption, which states that future
states only depend of the knowledge of the current state and not how the robot got
there, i.e., they are independent of past states.

The Bayesian recursive determination of the posterior probability density can be
computed in two steps:

• Measurement update
According to the notation and applying the Bayes’ rule to the last element of

the measurement vector Yt yields

p(xt|Yt) = p(zt|xt, Yt−1)p(xt|Yt−1)

p(zt|Yt−1)

= p(zt|xt)p(xt|Yt−1)

p(zt|Yt−1)
(1)

p(zt|Yt−1) =
∫

�n

p(zt|xt)p(xt|Yt−1)dxt. (2)

since it has been assumed that the observation zt is conditionally independent of
the previous measurements given the state xt. Expression 1 is referred to as the
measurement update in the Bayesian recursion. The denominator of 1 is obtained
by marginalization in Eq. 2.

• Prediction
The effect of a time step over the state given the observations up to time t is

obtained by observing that

p(xt+1|Yt) =
∫

�n

p(xt+1|xt, ut, Yt)p(xt|Yt)dxt

=
∫

�n

p(xt+1|xt, ut)p(xt|Yt)dxt (3)
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where the assumption that the process xt is Markovian, and then xt+1 is independent
of Yt has been considered. Equations 1, 2 and 3 are the solution to a recursive
Bayesian estimation problem. In general, the multidimensional integrals in expres-
sions 2 and 3 have no explicit analytical solutions for nonlinear and non-Gaussian
models.

To implement Eqs. 1–3 it is necessary to specify p(xt+1|ut, xt) and p(zt|xt). The first con-
ditional density p(xt+1|ut, xt) is frequently referred to as probabilistic motion model
and the conditional density p(zt|xt) is called probabilistic sensor model. These distri-
butions will be obtained from the mobile robot state space model. The state space
estimation model is given by

xt+1 = f (xt, ut) + vt

zt = h(xt) + et (4)

The motion model is a probabilistic generalization of the robot kinematics. The proba-
bilistic motion model describes a posterior density over possible state successors xt+1,
given the state xt and control input ut . Motion noise is typically modelled by Gaussian
noise added to the robot motion components in the odometric measurements. The
probabilistic observation model p(zt|xt) expresses the uncertainty in the environment
information perceived by the mobile robot sensors. Since we assume that the robot is
given a map of the environment, and that the robot pose is xt, zt can be computed to
obtain the expected distance to be observed by the sensor. The probabilistic percep-
tion model p(zt|xt) describes the posterior density over possible sensor measurement
zt. Noise vt and et is typically modelled by a Gaussian noise added to the expected
distance.

According to these probabilistic models, the recursive expressions to be calculated
at each iteration of the recursive Bayesian filter 1–3 are given by

p(xt|Yt) = α−1
t pe(zt − h(xt))p(xt|Yt−1) (5)

αt =
∫

Rn

pe(zt − h(xt))p(xt|Yt−1)dxt (6)

p(xt+1|Yt) =
∫

Rn

pv(xt+1 − f (xt, ut))p(xt|Yt)dxt (7)

where pe(·) and pv(·) are Gaussian probability density expressions obtained from the
probabilistic observation and motion models. The algorithm 5–7 requires to solve two
generalized integrals to obtain the posterior probability distribution.

The posterior is a general solution to the estimation problem but rather difficult to
obtain and to manage for general non-linear and non-Gaussian problems. Each candi-
date parameter value in �n yields a value of p(x|y) reflecting the posterior probability
of the robot pose given the data up to time t. The complete posterior density function
contains all information available about the system, but to obtain an estimate it is
required to specify the parameter value. This posterior needs to be weighted accord-
ing to a given criterium to determine an estimate x̂ of the true parameter value, that
is the estimated pose value. Each choice of cost function lead us to different estima-
tors. Two common choices are the mean-square error and the maximum a posteriori
estimators.
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The minimum mean-square estimate is defined by

x̂MS = arg min
x∗

t

∫

�n

(xt − x∗
t )

T(xt − x∗
t )p(xt|Yt)dx

=
∫

�n

xtp(xt|Yt)dx (8)

Expression 8 yields that the optimal estimate in the mean-square sense is the condi-
tional mean. This estimate is also referred to as the conditional mean estimate. Since
the posterior probability distribution is multi-modal in the global localization problem
this estimate is not convenient. Another common estimator, and much more interest-
ing for global localization, is the maximum a posteriori. This estimator can be defined
as x̂MAP = arg maxx p(xt|Yt). This estimator, chosen to develop the ELF algorithm, is
explained in depth in Sect. 4.

3 Existing solutions

Depending on the method of representing the probability density function p(xt|Yt)

different classes of filters are obtained. Before presenting the Evolutionary filtering
method, it is convenient to consider the existing methods of obtaining the poster-
ior probability density p(xt|Yt) which lead us to substantially different methods with
very different properties. Equations 2 and 3 of the recursive Bayesian filter require
to evaluate integrals. This integrals can initially be numerically evaluated since the
integrand consists of analytically known functions defined in the problem model. But,
independently of the numerical integration method used, the prior at the next iter-
ation is only known approximately. Future iterations will have integrands that are
not analytically known. The main arguments against that numerical integration in a
n dimensional Euclidean space is the computational burden. It can be shown that,
for a given level of accuracy, the computational requirements grow exponentially
with the state dimension. This exponential relation is usually referred as the curse of
dimensionality.

There are a number of approximation schemes that will turn the Bayesian func-
tional propagation into a tractable equivalent. The common idea of these schemes is
that the propagation of the continuous probability density function p(xt|Yt) is replaced
by a propagation of the probability in a finite set of simple probability elements spread
over the region of interest in the state space. Some different approaches that will end
up as a feasible algorithm are:

• Mixture of Gaussians
The whole distribution is approximated as a sum of a set of weighted Gaussian

distributions. The probability at a given point is the weighted sum of the probability
induced by each Gaussian distribution at that point (see Fig. 1a).

p(xt|Yt) ≈
N∑

i=1

γiN (xt; µi, �i) (9)

This approach takes advantage of the property of Gaussian distributions that
multiplying and convolving Gaussian distributions will generate new Gaussian
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(a)

(b)

(c)

Fig. 1 Probability density approximations: (a) mixture of Gaussians, (b) piecewise approximation,
(c) Monte Carlo approximation

distributions [5, 16, 25]. Multi-hypothesis Extended Kalman Filters falls into this
class of filters. The conventional Extended Kalman Filter is unimodal, hence for
multi-modal distributions the filter will fail. One possibility to deal with multi-
modal distributions is to use a different Extended Kalman Filter to pursue each
possible hypothesis about the robot pose. The combination of all Gaussian dis-
tributions together with the belief in each hypothesis can be interpreted as the
global posterior probability distribution from a Bayesian point of view. In this
approach, the integrals are not evaluated explicitly, but conceptually are replaced
by summations.

• Discretization of the state space
The grid-based approach divides the state space into regions and express the

probability of being in each region [3, 9, 22]. The grid mesh defines an approxi-
mation of the conditional density given by a point mass value in each grid node
position. This description induces an approximation of each probability integral
by a finite sum over nonzero grid points values (see Fig. 1b).

In this approach the posterior probability distribution is approximated by a set
of point values on a grid

p(xt|Yt) ≈
N∑

i=1

piδ
(
xt − xi

t
)

(10)

Each of these N grid points are equipped with a corresponding probability mass
weight p(xi

t|Yt), k = 1, . . . , N. This technique substitutes the evaluation of the
integrals in the Bayes’ recursive expression by a sum of cells probabilities, and
starts with a uniform probability distribution over the whole three dimensional
state-space of the robot.

• Monte Carlo approximation of the integrals
The Monte Carlo Localization methods are an alternative class of filters called

sampling-based methods in which theoretical probability distributions on the state
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space are approximated by simulated random measurements [7, 17, 23]. In those
methods the probability density function is represented by a set of N randomly
sampled points called particles St = {xi

t; i = 1, . . . , N} (see Fig. 1c). Based on the
samples it is possible to replace the infinite integrals with sums of weighted samples.
In the Bayesian importance sampling this cloud is supposed to be independent
and independently distributed draw from the proposal distribution yielding the
following approximation

p(xt|Yt) ≈
N∑

i=1

wi
tδ

(
xt − xi

t
)

(11)

where wi
t are the normalized importance weights.

The Monte Carlo filtering technique main limitations comes from the high compu-
tational cost required and also from the relatively slow convergence of the algorithm.

4 Maximum a posteriori localization

From a maximum a posteriori point of view, the localization problem is basically an
optimization problem, where the robot seeks to estimate the pose which maximizes
the a posteriori probability density.

x̂MAP
t = arg max

x
p(xt|Yt)

= arg max
x

p(zt|xt, ut−1, Yt−1)p(xt|xt−1, ut−1, Yt−1)

= arg max
x

p(zt|xt)p(xt|xt−1, ut−1)p(xt−1|Yt−1)

= arg max
x

t∏
i=1

p(zi|xi)

t∏
i=1

p(xi|xi−1, ut−1)p(x0) (12)

This expression requires to specify p(xt|xt−1, ut−1) and p(zt|xt). These distributions
will be obtained from the mobile robot state space model.

The maximum a priori (MAP) estimate expression can be easily stated as an
optimization problem in the presence of constraints in terms of the dynamical and
observation models of the robot. The MAP estimate is the solution x̂t to the following
problem, subject to conditions (4).

max
x

t∏
i=1

pe(zi|xi)

t∏
i=1

pv(xi|xi−1, ut−1)p(x0) (13)

where pe express the probability density function for the observation noise e, and pv
indicates the probability density function for the motion noise v. The expression 13
can be reformulated in an equivalent and convenient form by taking logarithms

max
x

[
t∑

i=1

log pe(zi|xi) +
t∑

i=1

log pv(xi|xi−1, ui−1) + log p(x0)

]
(14)

In general, the calculation of estimates for this optimization problem have no explicit
analytical solutions for nonlinear and non-Gaussian models, and have to be iteratively
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solved to avoid the difficulties included in the optimization problem. These difficulties
derives from the following aspects:

(1) It is highly nonlinear. Non-linearities due to motion and perception functions
are propagated through the a posteriori robot pose probability density function.

(2) Environment symmetries make the objective function to maximize multi-modal.
At initial stages the objective function admits a high number of solutions, even
with the same maximum value. That happens in highly symmetric environments
as typical offices buildings. The reason can be noticed in 14 where second term
pv is a constant in absence of robot motion and the third term p(x0) is also
constant in absence of initial pose information. This lead the objective func-
tion maxx

∑t
i=1 log pe(zi|xi) which only depends on observations and in highly

regular environments has potentially multiple maxima.
(3) Another source of symmetries is originated by sensor limitations. The range and

angular resolution of the sensor adds observational symmetries.

In order to solve 14 a set of candidate estimates have to be initially generated, main-
tained or pruned according to the new observation and motion information included
in the objective function. The problem is simplified in case the initial probability dis-
tribution is Gaussian, because the problem becomes uni-modal and then it is possible
to obtain, even analytically, an estimate (due to the problem can be converted in a
quadratic minimization problem if non linear motion and observation models can be
approximated by a linear Taylor series expansion about the current estimate x̂t). This
situation lead us to the well known Extended Kalman Filter solution of the position
tracking problem.

We will use the notation f0(x) to refer the objective function to maximize. The
problem of finding an x that maximizes f0(x) among all x that satisfy the conditions
xt+1 = f (xt, ut) + vt and zt = h(xt) + et is limited to finding the optimal value between
the set of all feasible points. A pose is feasible if satisfies the constraints f () and h().
In the problem under consideration, there exists, at least at initial stages, multiple
optimal values, then methods to solve the problem require to be able to manage a
set of solutions. Bayesian methods use the a posteriori probability density function
to do that, as was previously commented. The method proposed here uses a differ-
ent approach, the idea is to maintain a set of N feasible solutions to the problem,
and let this set evolve towards optimal values according to the observed motion and
perception data and the constraints.

A second aspect required to solve in this optimization problem is how to obtain the
optimal solutions at each time step. When f0 is differentiable, a well known approach
is based on the gradient vector of the objective function:

∂f0(xt)

∂xt
= 0 (15)

Briefly, the aim of the estimation is to determine an estimate for each t, so that it
defines a sequence of roots of the objective function equation that is consistent and
asymptotically efficient. For linear estimation models in general, the function usually
has a global maximum in the interior of the parameter space. In case the objective
function is not linear, the gradient vector of the objective function S(zt, xt) = ∂f0(xt)

∂xt
can be approximated by a linear Taylor series expansion about the current iteration
xk

t for xt. This gives
S(zt, xt) ≈ S(zt, xk

t ) − I(xk
t , zt)(xt − xk

t ) (16)



J Glob Optim (2007) 37:381–403 389

where I(xk
t , zt) is the second-order partial derivative of the objective function with

respect to the parameters vector to estimate xt (the hessian matrix). A new fit xk
t is

obtained by taking it to be the zero of the right-hand side of 16. Hence

xk+1
t = xk

t + I−1(xk
t , zt

)
S
(
zt, xk

t
)

(17)

If the objective function f0(x) = p(zt|xt, Yt−1) is concave and unimodal, then the
sequence of iterates {xk

t } converges to the maximum a posteriori estimate of xt, in one
step if the a posteriori probability density function is a quadratic function of xt. When
the objective function is not concave and unimodal, the Newton–Raphson method
is not guaranteed to converge from an arbitrary starting value. Newton–Raphson
method in its basic form can be used for position tracking but it can not be used easily
in global localization problem.

In spite of the inability of using gradient-based methods to provide a reasonable
approach to this problem, the idea of moving the estimate iteratively toward the most
promising direction (indicated by the gradient) can be adopted. In global localization,
there is a set of optimal and sub-optimal feasible solutions and we have multiple gra-
dients. The method proposed in this work is to use the direction between each pose
included in the sub-optimal set and the best pose contained in it as a kind of fictitious
gradient to iterate each pose of the sub-optimal set of solutions.

4.1 Recursive formulation

The MAP estimate formulated as an optimization problem in the form maxx f0(xt)

subject to conditions (4), is not practical from a computational point of view. In order
to implement the global localization algorithm in a robot, a recursive formulation is
required. If we observe the objective function f0(xt), it can be expressed recursively
in the following way:

f0(xt) =
t∑

i=1

log pe(zi|xi) +
t∑

i=1

log pv(xi|xi−1, ut) + log p(x0)

= log pe(zt|xt) +
t−1∑
i=1

log pe(zi|xi)

+ log pv(xt|xt−1, ut−1, m) +
t−1∑
i=1

log pv(xi|xi−1, ut−1) + log p(x0)

= log pe(zt|xt) + log pv(xt|xt−1, ut−1) + f0(xt−1) (18)

If we are able to solve the optimization problem at time t − 1, we have a set of sub-
optimal solutions which satisfy the optimization problem up to time t − 1. And the
MAP optimization problem can be reformulated as

max
x

log pv(zt|xt) + log pe(xt|xt−1, ut−1) (19)

subject to conditions (4) and xt−1 = x∗
t−1, where x∗

t−1 is the x which maximize the
MAP optimization problem up to t − 1. Then solving 19 we will obtain a recursive
version of the MAP estimate.
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In the following section an evolutive algorithm is proposed to obtain the evolu-
tionary MAP estimate for the global localization problem according with the ideas
introduced in this section.

5 ELF algoritm

The algorithm proposed to implement the evolutive filter is based on the differential
evolution method proposed by Storn and Price [21] for global optimization problems
over continuous spaces. The Evolutive Filter uses a parallel direct search method
which utilizes n dimensional parameter vectors xk

i = (xk
i,1, . . . , xk

i,n)T to point each
candidate solution i to the optimization problem at iteration k for a given time step t.
This method utilizes N parameter vectors {xk

i ; i = 1, . . . , N} as a sub-optimal feasible
solutions set (population) for each generation t of the optimization process.

The initial population is chosen randomly to cover the entire parameter space uni-
formly. In absence of a priori information the entire parameter space has the same
probability of containing the optimum parameter vector, and a uniform probability
distribution is assumed. The differential evolution filter generates new parameter vec-
tors by adding the weighted difference vector between two population members to
a third member. If the resulting vector yields a lower objective function value than a
predetermined population member, the newly generated vector replaces the vector
with which it was compared; otherwise, the old vector is retained. This basic idea
is extended by perturbing an existing vector through the addition of one or more
weighted difference vectors to it (see Fig. 2).

The perturbation scheme generates a variation v according to the following expres-
sion,

v = xk
i + L

(
xk

b − xk
i
) + F

(
xk

r2
− xk

r3

)
(20)

where xk
i is the parameter vector to be perturbed at iteration k, xk

b is the best param-
eter vector of the population at iteration k, xk

r2
and xk

r3
are parameter vectors chosen

randomly from the population and are different from running index i. L and F are
real and constant factors which controls the amplification of the differential variations
(xk

b − xk
i ) and (xk

r2
− xk

r3
). In our case and for simplicity reasons L = F is adopted.
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In order to increase the diversity of the new generation of parameter vectors, cross-
over is introduced. Denote by uk

i = (uk
i,1, uk

i,2, . . . , uk
i,n)T the new parameter vector with

uk
i,j =

{
vk

i,j if pk
i,j < δ

xk
i,j otherwise

(21)

where pk
i,j is a randomly chosen value from the interval [0, 1] for each parameter j of

the population member i at step k and δ is the crossover probability and constitutes
the crossover control variable. The random values pk

i,j are made anew for each trial
vector i.

To decide whether or not vector uk
i should become a member of generation i + 1,

the new vector is compared to xk
i . If vector uk

i yields a better value for the objective
fitness function than xk

i , then is replaced by uk
i for the new generation; otherwise ,

the old value xk
i is retained for the new generation. The general idea of the previous

mechanism: mutation, crossover and selection are well known and can be found in
literature [12].

5.1 Fitness function

According to the optimization problem under consideration

max
x

t∑
i=1

log pe(zi|xi) +
t∑

i=1

log pv(xi|xi−1, ut−1) + log p(x0) (22)

subject to conditions (4). The natural choice for fitness function is the objective func-
tion.

f0(xt) =
t∑

i=1

log pe(zi|xi) +
t∑

i=1

log pv(xi|xi−1, ut−1) + log p(x0) (23)

This expression contains three probability densities. The perception model pe(zi|xi),
the robot motion model pv(xi|xi−1, ut−1) and the initial a priori robot pose information
p(x0).

The problem of computing pe(zi|xi) can be divided into three parts:

(1) The prediction of the value of the noise-free sensor assuming the robot pose
estimate is x̂t, the sensor relative angle with respect to the robot axis is αi and
a given environment model m. Let ẑt,i = h(x̂t, αi, m) denote this ideal predicted
measurement. From a practical point of view, ẑt,i = h(x̂t, αi, m) is computed
using a ray tracing method. From an statistical point of view, and assuming the
measurement error is Gaussian, this predicted measure will be the center of the
Gaussian probability distribution of the expected distance measured by the αi
sensor when robot is located at xt.

(2) The obtaining of the probability of observing zt,i data given the robot pose esti-
mate. Assuming the measurement error et,i is Gaussian, centered at h(x̂t, αi, m)

and with a σe standard deviation (that is et,i ≈ N(h(x̂t, αi, m), σe)), then the
probability of observing zt,i with sensor i can be expressed as,

pe(zt,i|x̂t) = 1(
2πσ 2

e
)1/2

e
−1/2

(zt,i−ẑt,i)2

σ2
e (24)
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(3) The integration of the individual sensor beam probabilities into a single
probability value. Assuming conditional independence between the individual
measurements:

pe(zt|x̂t) =
Ns∏
i=0

p(zt,i|x̂t) =
Ns∏
i=0

1(
2πσ 2

e
)1/2

e
−1/2

(zt,i−ẑt,i)2

σ2
e (25)

where Ns is the number of sensor observations.

The second probability required to calculate the objective function is pe(xi|xi−1, ut−1).
The problem of computing pv(xi|xi−1, ut−1) can be divided into two parts:

(1) The prediction of the noise free value of the robot pose x̂t assuming the robot
pose estimate is x̂t and the motion command at t is ut. Let x̂t = f (x̂t−1, ut−1)

denote this ideal predicted state. From an statistical point of view, and assuming
the motion error is Gaussian, this predicted measure will be the center of the
Gaussian probability distribution of the expected distance when robot is located
at x̂t.

(2) The obtaining of the probability of being at xt given the robot pose estimate in
t, x̂t−1 and the motion command ut−1. Assuming the motion error v is Gaussian,
centered at x̂t and with a covariance matrix P (that is v ≈ N(f (x̂t−1, ut−1), P),
then the pv(xi|xi−1, ut−1) probability can be expressed as,

pv(xi|xi−1, ut−1) = 1√|P|(2π)n
e−1/2(xi−x̂i)P−1(xi−x̂i)

T
(26)

According to the recursive formulation (19), the objective function to optimize at
iteration t is given by

f0(xt) = log pe(zt|xt) + log pv(xt|xt−1, ut−1) (27)

and introducing the expressions of pv and pe,

f0(xt) = log
Ns∏
i=0

(
2πσ 2

e
)−1/2e

− (zt,i−ẑt,i)2

2σ2
e

+ log(|P|(2π)n)−1/2e− 1
2 (xi−x̂i)P−1(xi−x̂i)

T
(28)

f0(xt) =
Ns∑
i=0

log
(
2πσ 2

e
)−1/2 −

Ns∑
i=0

(zt,i − ẑt,i)
2

2σ 2
e

+ log[(|P|(2π)n)−1/2]− 1
2
(xi − x̂i)P−1(xi − x̂i)

T (29)

which can be reduced to find the robot’s pose to minimize the following function

f ′
0(xt) =

Ns∑
i=0

(zt,i − ẑt,i)
2

2σ 2
e

+ 1
2
(xi − x̂i)P−1(xi − x̂i)

T (30)

The differential evolutive filter will minimize iteratively the fitness function (30). The
objective fitness function let us notice that the optimization considers the quadratic
observation error and the quadratic pose error between the predicted pose and the
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pose under consideration weighted according its covariance matrix. Sometimes it can
be interesting to modify the relative weight of terms in the right-hand side of (30), this
can be done by multiplying by a scalar coefficient the second term. This coefficient
modulates the importance given to the different information sources in the fitness
function. It can be maintained constant or adaptively modified.

5.2 Analysis of the ELF algorithm

According with the previous ideas the algorithm has the following steps:

• Step 1: Initialization
The initial set of solutions is calculated and the fitness value associated to each of

the points in the state space is evaluated. In the most general case where no infor-
mation about initial position is available, the initial set of pose solutions is obtained
by drawing the robot poses according to a uniform probability distribution over
the state space.

The initial robot pose estimate is fixed to an initial value.
• Step 2: Evolutive search

(a) For each element of the set of robot pose solutions, and according to the
map, the expected sensor observations are obtained ẑt,i = h(x̂t, αi, m), i =
1, . . . , Ns. The expected observations, the sensor observations, the robot pose
estimate and the robot pose element are used to evaluate the loss function
for each robot pose element in the set of solutions.

(b) A new generation of perturbed robot pose solutions are generated according
to the perturbation method exposed in Sect. 4. For each perturbed solution
the expected observations are calculated and the loss function evaluated. If
the perturbed solution results in a better loss function, this perturbed solution
is selected for the following iteration, otherwise the original is maintained.

(c) The crossover operator is applied to the resultant population (solutions set).
(d) The robot pose element of the set with lower value of the loss function is

marked as best robot pose estimate. Go to step 2b a given number of itera-
tions.

• Step 3: Updating
The best robot pose element of the population is used as the updated state

estimate and then used in state transition model to predict the new state according
to the odometry information.

x̂t+1 = f (x̂t, ut) (31)

Then, the displacement is evaluated and the whole population is moved according
to this displacement. Then go to step 2.

6 Experimental results

All experiments have been developed in an indoor environment—University
laboratories, offices and corridors.
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Fig. 3 Trajectory simulated for ELF algorithm

6.1 Convergence of the algorithm

One fundamental question about genetic algorithms is their convergence and their
convergence rates: how quickly can the populations come to the individuals
(robot pose solutions) with the highest fitness value? Some theoretical literature
about genetic algorithm convergence to the global optimal (if it exists) shows that it
is guarantied if the elitist strategy is used [13]. This results have been obtained model-
ling genetic algorithms as Markov chains and using the theory about the convergence
rates of Markov chains to analyze the convergence of evolutionary algorithms. This
strategy selects, for the following generation, the individual with the highest fitness
value.

Three tests have been performed in this work where most important parameters
have been modified to study their influence. In each test, 10 simulations of each
different parameter have been done, and the medium values are presented in this
section.

The trajectory simulated starts in an office, and continues along the central corridor
toward the right side of the environment map (see Fig. 3). Then, the robot goes into the
next seventh office, returns along the central corridor and finishes in the movement
number 100.

First group of simulations has been carried out with a population of 500 individuals
and 15 iterations for each movement and for different percentage of sensor error.

It has been considered that the algorithm converges to a solution, when all solutions
in the population set are located in a ball of given radius around the best estimate
(0.5 m in our experiments). Figure 4 shows the convergence speed of the Evolutive
Filter as a function of the sensor error. The result shows the convergence rate reduc-
tion when the sensor error increases. In Fig. 4, the point where robot reaches the
convergence is shown for each simulation.

A second test has been performed with the same population as in the previous test
and a sensor error of 3%. In this case variation in the iteration number is studied.

Figure 5 shows that the convergence rate increases when the iteration number
increases.

In the third group of simulation the constant variables are the sensor error (of 3%)
and the iterations number (which is 15). The influence of the population size on the
algorithm is studied and presented in Fig. 6.

In this case, the convergence speed increases with the number of individuals but
above to 150 members the convergence speed does not improve. This is an important
conclusion because a high number of individuals imply a time computing increment.
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Fig. 4 Convergence speed as a function of the sensor error
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Fig. 5 Convergence speed as a function of the iterations number

As all the result suggest (Figs. 4, 5 and 6), the algorithm proposed is extremely
efficient in terms of convergence speed. The behavior of the algorithm is clearly
asymptotic.

6.2 Accuracy and robustness

One striking aspect is the low number of robot pose solutions required in the popu-
lation. In Fig. 6, it can be noticed that convergence speed, that is the step which the
convergence is reached, is standing under 9 steps for population sizes greater than
150 members.
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Fig. 6 Convergence speed as a function of the individuals number
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Fig. 7 Accuracy as a function of the population size

If we consider the effect of the population size on the accuracy of the algorithm
(in Fig. 7), it can be noticed a minimum effect. This behavior is a consequence of the
search nature of the ELF algorithm. This behavior differs completely from Monte
Carlo results. As noticed by several authors ([8, 18]), the basic Monte Carlo filter
performs poorly if the proposal distribution, which is used to generate samples, place
not enough samples in regions where the desired posterior is large. This problem
has practical importance because of time limitations existing in on-line applications.
In this Fig. 7 a reduction of the position error is observed when the number of the
members increases. Nevertheless, the reduction does not go on above 500 members. It
must be also said that with 10 members in the population, different non convergence
case was produced.
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Fig. 8 Error of ELF (and typical deviation) as a function of the sensor noise

According these results, it can be noticed that 500 is an appropriate population size
for the environment under consideration.The size of the environment under consider-
ation is approximately 800 m2, then only 0.62 elements per square meter is required.
An interesting comparison with other particle or sampling based methods like Monte
Carlo can be done. Jensfelt tests with a Monte Carlo Localization method [15] shows
that the value of N has a critical effect on the robustness.

In Fig. 8, the medium position error and the typical deviation versus sensor error
(in %) is presented. Medium values have been performed with 10 experiments for
each simulation. Figure 8 shows a continuous increment in the medium error and its
typical deviation when the sensor error increases. It must be highlighted that under a
10% sensor error, the medium position error is less than one cell.

Figure 8 shows the performance of the ELF under different sensor noise levels.
The ELF algorithm exhibits a relatively constant average error less than 5 cm until a
sensor noise level of 30%, but even with higher noise levels (50%) is able to localize
the robot. This robustness to sensor noise is equivalent to Monte Carlo results shown
in [23], but the accuracy for similar noise levels is higher. In those tests with Monte
Carlo Localization, the error average is between 20 cm and 30 cm until a 10% of sensor
noise ratio and then it degrades gracefully.

To finish, the error of a typical deviation of the ELF algorithm versus iteration num-
ber is presented in Fig. 9. The waited theoretical shape for this curve is like a bathtub,
due to the hyperconvergence caused by the genetic algorithm for a high number of
iterations. Nevertheless this has not been able to be observed in the experiments. Up
to 10 iterations there are not an improvement in the mean position error. From 45
iterations, an error increment appear to be observed.

6.3 Complexity and computational cost

A final issue addressed in our experiments concerns the running time of ELF algo-
rithm. The absolute time depends on several factors: the computer platform, the
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Fig. 9 Accuracy as a function of the iteration number

Table 1 Computation time for
a fixed number of iterations

Population/Iterations Time (ms)

1,000/15 1,703
500/15 859
400/15 704
300/15 520
200/15 359
100/15 180
75/15 141
50/15 94

observation prediction model and the sensor data, and the population and iterations
number. This section illustrates the requirements of ELF. All results reported here
were obtained in a PC with an Athlon XP 1800+ processor (Table 1).

Table 1 shows the time required for ELF to update the estimate value using 60
range laser data, 15 iterations and different population sizes. Table 2 shows the time
required for ELF algorithm to update the robot pose estimate using a fixed population
size and changing the iterations number. In both cases the behavior of the algorithm
is completely linear. The complexity of the algorithm is then O(N.M) where N is the
population size and M is the iteration number. In our experimental localization tests,
in a test area of 900 m2 the best results have been obtained with an initial population
of 500 elements and 15 iterations. Once the population converge into a ball of 1 meter
radius, the population required to keep the robot localized decrease considerably. In
our experiments 50 elements are sufficient. This result shows that even in the initial
steps of the ELF algorithms the computational cost is moderate.

A critical point in any global localization algorithm is the variation in the com-
putational requirements with the environment dimensions. EFL algorithm uses a
very low samples density, but at initial stages the algorithm have to evaluate the
whole environment map. Then the initial number of samples is proportional to the



J Glob Optim (2007) 37:381–403 399

Fig. 10 Convergence evolution for 100 movements in positions: 1, 3, 5, 6, 7, 10. Convergence final is
observed to be placed after movement number 10
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Table 2 Computation time for
a fixed population of 500
elements

Population/Iter. Time(ms)

500/5 328
500/10 641
500/15 859
500/20 1,125
500/25 1,407

environment area. In the experiments done in our laboratory test site, to cope with
a 900 m2 area the algorithms requires 500 samples and for an area of 1, 800 m2 the
samples required are 1, 000.

Figure 10 shows a typical convergence process of the Evolutionary Localization
Filter for a population set of 1,000 individuals and 15 iterations of the Evolutionary
Filter in each cycle. It can be noticed that the population individuals tend to concen-
trate in highly similar areas at the initial robot pose. After some cycles the algorithm
estimate (circle) reaches the true robot pose (cross) and the population set converges
to the true robot pose.

7 Related work

Kalman filtering algorithms usually do not use raw sensor data for localization.
Instead, they extract features from which robot poses can be estimated. Different
approaches can be found in the literature to extract features, such as points, lines, cor-
ners, etc. Using features instead of the raw sensor data can be loss-free if the features
contain sufficient statistical information relative to the problem of estimating robot
poses. In practice, there is no guarantee of sufficiency, and significant information may
be lost when extracting features from raw sensor data.

In spite of these limitations, multi-hypothesis Kalman filters have been applied
successfully to global localization problems and position tracking. Localization algo-
rithms based on the multi-hypothesis Kalman filter represent probabilities using mix-
tures of Gaussians. To calculate the covariance matrices of the individual Gaussian
mixture components, the Kalman filtering approach linearizes the motion model and
the observation model. Noise in sensor measurement and robot motion is assumed
Gaussian. The number of mixture components and the relative weight apply heuristic
rules for terminating low weight Gaussians and to creating new ones. The number
of hypothesis required depends on the symmetries and ambiguities of the environ-
ment perceived. These hypothesis, besides the integration of new sensor data by
mean of Kalman equations requires to verify, to eliminate and sometimes to split up
into several offspring hypothesis. The number of hypothesis can be high, in a typi-
cal indoor environment of 150 square meters [1] uses 72 hypothesis at initial stages
of the algorithm which are progressively pruned. The hypothesis generation takes
four times the time required for hypothesis tracking which limits the advantage of
the computational efficiency of Kalman filtering. In any case, the number of poten-
tial hypothesis grows rapidly with the environment area and so does the hypothesis
generation cost.

In grid-based approaches, the environment is decomposed into a number of reg-
ular cells (there exists versions with non regular decompositions whose size and
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location depends on the structure of the environment). In case of regular space
state decompositions, the size of the grid is very big and grows very fast (due to
robot pose is a three dimensional problem the number of cells required can be var-
ious millions even for moderate size environments). These methods use raw sensor
data to update the probability distribution by means of the Bayes’ rule. The dis-
advantage of grid-based localization methods lies in the huge number of grid-cells
which have to be updated. A small-size environment of 10 × 10 m, with a cell size
of 10 × 10 centimeter and 2◦ of angular resolution the state space is discretized in
1, 800, 000 states. Each of these states has to be updated for any incoming sensor
data and motion command executed by the mobile robot. In order to deal with such
huge state spaces Fox applies a fast model for proximity sensors and a technique for
selectively updating the probability state focused only on the relevant part of the
space.

Monte Carlo based filters represent the probability distribution as a set of sam-
ples, and the most probable locations are represented by a high concentration of
the weighted samples in those areas. These samples have to be carefully weighted,
updated and re-distributed to cope the location ambiguities from environment or
sensing. The ability of these techniques to properly react to sensor and motion infor-
mation is due to the quantity of samples and a distribution strategy which must be
appropriately chosen. The effectiveness of the method depends on the number of
samples used to model the probability distribution, and is critical at initial stages of
the algorithm where probability distribution is spread along the environment promis-
ing areas. These approaches have shown their efficiency to solve the problem, but the
computational burden of this technique limits their practical applications. Some adap-
tive schemes ([15, 23]) have improved considerably the number of samples required
to obtain reliable results, but the number of samples required remains considerable
until the algorithm converge to the correct robot pose. Besides, the number of iter-
ations at each cycle is also elevated, Jensfelt tests require around 40 iterations to
converge to the adequate posterior probability distribution. Thrun has evaluated the
number of samples required and according to his test good results has been obtained
within the range between 1, 000 and 5, 000 samples. This number of sample restricts
the applications of this solution to off line problems. An interesting possibility in this
technique consist on dynamically adapt the number of samples to the probability dis-
tribution situation. This adaptation allows for a reduction of the number of samples
(100 can be enough) when the probability distribution is clearly concentrated on one
hypothesis.

As noticed by several authors [18], the basic particle filter performs poorly if the
proposal distribution, which is used to generate samples, places not enough samples
in regions where the desired posterior probability is large. This problem has practical
importance in the context of Monte Carlo localization. A solution adopted by some
researchers consist on the addition of random samples into the posterior and the
generation of samples at locations that are consistent with the sensor readings [20].

8 Conclusion

To the best of our knowledge, the evolutionary localization filter proposed here is
new. The ELF algorithm presented in this article can handle arbitrary noise models
and is capable of using raw sensor data (e.g., laser range data) for global localization.
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The Markov chain nature of evolutionary algorithms is exploited by introducing in
the loss function the sensor error innovation together with motion error innovation.
In the method proposed here each individual in the evolutive algorithm will represent
a possible solution to the localization problem and the value of the loss function rep-
resent the error to explain the perceptual and motion data. The search of this solution
is done stochastically employing an evolutive search technique.

The evolutive optimization technique constitutes a probabilistic search method
that avoids derivatives. The use of derivatives present two types of problems:

• Causes strong numerical oscillations when noise to signal ratio is high.
• Requires differentiable functions, because otherwise the derivatives can be dis-

continuous or even do not exist.

The set of solutions (the population) is modified according to the natural evolution
mechanism: selection and crossover, in a recursive loop. Each loop iteration cor-
responds to one generation, and represent the set of solutions (population) at this
moment. The selection operator tries to improve the medium quality of the set of
solutions by giving higher probability to be copied to next generation to the best solu-
tions. This operator has a substantial significance because it focuses on the search of
best solutions in the most promising regions of the state space. The quality of an indi-
vidual solution is measured by means of the fitness function. It has been demonstrated
[10, 11], that Genetic Algorithms operating in restricted areas of the solution space
can be a fast optimization method for time-varying, non linear and non differentiable
functions.

This article introduced a new mobile robot localization technique, called ELF.
ELF possesses a range of advantages over previous localization algorithms capable
of global localization from ambiguously interpretable data information:

(1) The algorithm can accommodate arbitrary non-linear system dynamics, sensor
characteristics and non-Gaussian noise. By introducing in the fitness function the
sensor innovation together with the motion innovation, and due to the Markov
Chain behavior of the evolutive search algorithm the set of particles evolves
gradually along the most probable environment areas.

(2) Since the set of solutions does not try to approximate posterior density distribu-
tions, it does not require any assumptions on the shape of the posterior density
as parametric approaches do.

(3) Evolutive filter focus computational resources in the most relevant areas, by
addressing the set of solutions to the most interesting areas according to the
fitness function obtained.

(4) Tests indicate that the number of tentative solutions required in the evolving set
is lower than those required in particle filters, and similarly to those filters the
evolving set can be reduced when the algorithm has converged to a reduced area
around the best estimate.

(5) The size of the minimum solution’s set required to guaranty the convergence of
the evolutive filter to the true solution is low.

(6) The algorithm is easy to implement, and the computational cost makes it able to
operate on line even in relatively big areas.

(7) Due to the stochastic nature of the algorithm search of the best robot pose
estimate the algorithm is able to cope a high level of sensor noise with low
degradation of the estimation results.
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